Hess's Law Problems

Q1 2-Methylpropan-1-ol can also be converted to produce diesel and jet fuel.
The first step in the process is the production of 2-methylpropene.

$$
\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{(l)} \quad \rightarrow \quad \mathrm{C}_{4} \mathrm{H}_{8(\mathrm{~g})} \quad+\quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

2-methylpropan-1-ol

2-methylpropene

Using the data below, calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the production of 2-methylpropene from 2-methylpropan-1-ol.

$$
\begin{array}{ll}
4 \mathrm{C}_{(\mathrm{s})}+5 \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{(\mathrm{l})} & \Delta \mathrm{H}=-335 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
4 \mathrm{C}_{(\mathrm{s})}+4 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8(\mathrm{~g})} & \\
\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} & \Delta \mathrm{H}=-17 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta \mathrm{H}=-242 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Q2 When in danger, bombardier beetles can fire a hot, toxic mixture of chemicals at their attacker. This mixture contains quinone, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$, a compound that is formed by the reaction of hydroquinone, $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}$, with hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$.
The equation for the overall reaction is:

$$
\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2(a \mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2(a \mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

Use the following data to calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the above reaction.

$$
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} & \Delta \mathrm{H}=+177 \cdot 4 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})} & \Delta \mathrm{H}=-191 \cdot 2 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} & \Delta \mathrm{H}=-241 \cdot 8 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{e})} & \tag{3}
\end{array}
$$

Q3 Self-heating cans may be used to warm drinks such as coffee. When the button on the can is pushed, a seal is broken, allowing water and calcium oxide to mix and react.

The reaction produces solid calcium hydroxide and releases heat. If more water is used the calcium hydroxide is produced as a solution instead of as a solid.

The equation for the reaction is:

$$
\mathrm{CaO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}
$$

Using the following data, calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction.

$$
\begin{array}{ll}
\mathrm{Ca}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CaO}_{(\mathrm{s})} & \Delta \mathrm{H}=-635 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{e})} & \Delta \mathrm{H}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{Ca}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})} & \Delta \mathrm{H}=-986 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(a \mathrm{aq})} & \Delta \mathrm{H}=-82 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Q4 Mobile phones are being developed that can be powered by methanol. Methanol can be made by a two-stage process.

In the first stage, methane is reacted with steam to produce a mixture of carbon monoxide and hydrogen.

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}
$$

Use the data below to calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the forward reaction.

$$
\begin{align*}
\mathrm{CO}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{CO}_{2(\mathrm{~g})} & \Delta \mathrm{H}=-283 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} & \Delta \mathrm{H}=-242 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} & \Delta \mathrm{H}=-803 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{2}
\end{align*}
$$

Q5 The compound diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ is used as a rocket fuel. The equation for the combustion of diborane is shown below.

$$
\mathrm{B}_{2} \mathrm{H}_{6(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{B}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

Calculate the enthalpy of combustion of diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ in $\mathrm{kJ} \mathrm{mol}^{-1}$, using the following data.

$$
\begin{array}{rlrl}
2 \mathrm{~B}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})} & \rightarrow \mathrm{B}_{2} \mathrm{H}_{6(\mathrm{~g})} & \Delta \mathrm{H}=36 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{e})} & & \Delta \mathrm{H}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
2 \mathrm{~B}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{B}_{2} \mathrm{O}_{3(\mathrm{~s})} & & \Delta \mathrm{H}=-1274 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{2}
\end{array}
$$

Q6 The industrial method currently used to produce butan-2-ol is the hydration of but-2-ene.

$$
\mathrm{C}_{4} \mathrm{H}_{8(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{(\mathrm{g}}
$$

The enthalpy values for the following reactions are:

$$
\begin{array}{ll}
4 \mathrm{C}_{(\mathrm{s})}+4 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8(\mathrm{~g})} & \Delta \mathrm{H}=-7 \cdot 1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
4 \mathrm{C}_{(\mathrm{s})}+5 \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{(\mathrm{g})} & \Delta \mathrm{H}=-292 \cdot 8 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} & \Delta \mathrm{H}=-483 \cdot 6 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Using the data above, calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the production of butan-2-ol by hydration of but-2-ene.

Q7 Enthalpy changes can also be calculated using Hess's Law. The enthalpy of formation for pentan-1-ol is shown below.

$$
5 \mathrm{C}_{(\mathrm{s})}+6 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}_{(\ell)} \quad \Delta \mathrm{H}=-354 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Using this value, and the enthalpies of combustion of carbon and hydrogen from the data booklet, calculate the enthalpy of combustion of pentan-1-ol, in $\mathrm{kJ} \mathrm{mol}^{-1}$.

Q8 Glycerol, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$, is widely used as an ingredient in toothpaste and cosmetics.
The enthalpy of formation of glycerol is the enthalpy change for the reaction:

$$
\underset{\text { (graphite) }}{3 \mathrm{C}_{(\mathrm{s})}}+4 \mathrm{H}_{2(\mathrm{~g})}+1^{1 / 2 \mathrm{O}_{2(\mathrm{~g})}} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3(\mathrm{l})}
$$

Calculate the enthalpy of formation of glycerol, in $\mathrm{kJ} \mathrm{mol}^{-1}$, using information from the data booklet and the following data.

$$
\begin{equation*}
\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3(\ell)}+31 / 2 \mathrm{O}_{2(g)} \rightarrow 3 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \Delta \mathrm{H}=-1654 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{2}
\end{equation*}
$$

Q9 Silane, silicon hydride, is formed in the reaction of silicon with hydrogen.

$$
\mathrm{Si}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{SiH}_{\text {silane }}
$$

The enthalpy change for this reaction is called the enthalpy of formation of silane.
The combustion of silane gives silicon dioxide and water.

$$
\mathrm{SiH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SiO}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \quad \Delta \mathrm{H}=-1517 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The enthalpy of combustion of silicon is $-911 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Use this information and the enthalpy of combustion of hydrogen in the data booklet to calculate the enthalpy of formation of silane, in $\mathrm{kJ} \mathrm{mol}^{-1}$.

Q10 The equation for the enthalpy of formation of ethyne is:

$$
2 \mathrm{C}_{(\mathrm{s})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}
$$

Use the enthalpies of combustion of carbon, hydrogen and ethyne given in the data booklet to calculate the enthalpy of formation of ethyne, in kJ mol-1.

Q11 Hess's Law can be used to obtain enthalpy changes for reactions that cannot be measured directly.

Use the following enthalpy changes

$$
\begin{array}{rll}
\mathrm{KClO}_{3(s)}+3 \mathrm{Mg}_{(s)} \rightarrow \mathrm{KClO}_{3(s)}+3 \mathrm{MgO}_{(s)} & \Delta \mathrm{H}=-1852 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{~K}_{(s)}+1 / 2 \mathrm{Cl}_{2(\mathrm{~g})} & \rightarrow \mathrm{KCl}_{(s)} & \Delta \mathrm{H}=-437 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{Mg}_{(s)}+1 / 2 \mathrm{O}_{2(g)} & \rightarrow \mathrm{MgO}_{(s)} & \Delta \mathrm{H}=-602 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

to calculate the enthalpy change in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction:

$$
\begin{equation*}
\mathrm{K}_{(\mathrm{s})}+1 / 2 \mathrm{Cl}_{2(\mathrm{~g})}+1^{1 / 2} \mathrm{O}_{2(g)} \rightarrow \mathrm{KClO}_{3(\mathrm{~s})} \tag{2}
\end{equation*}
$$

Q1 $\quad \Delta \mathrm{H}=[+335+(-17)+(-242)](\mathbf{1}$ mark $) \quad=(+) 76\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1}$ mark $)$
Sign and units need not be given in answer but if given must be correct
Q2 $\quad-202 \cdot 6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (ignore units) (3 marks) $\quad 177 \cdot 4+191 \cdot 2+2(-241 \cdot 8)+2(-43 \cdot 8)$

- reversing peroxide equation (1 mark).
- doubling water formation and condensation equations (1 mark).
- correct additions (1 mark).

Q3 - $147 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2 marks) 1 mark is awarded for 2 out of the four following numbers

$$
+635+286-986-82
$$

Q4 $+206 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2 marks) 1 mark is awarded for 2 out of the three following numbers

$$
-803+726+283
$$

Q5 $\quad-2168\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(2$ marks $) 1$ mark for 2 from the three correct enthalpy change values:

$$
-36 \mathrm{~kJ} \quad-1274 \mathrm{~kJ} \quad 3 \mathrm{x}-286(=-858) \mathrm{kJ}
$$

-43.9 (2 marks)
1 mark for 2 values from this list $\quad+7.1 \quad+241 \cdot 8 \quad-292 \cdot 8$

Q7 -3332 (2 marks)
1 mark for 2 from the three correct enthalpy change values:

$$
+354-5 \times 394 \text { or }-1970 \quad-6 \times 286 \text { or }-1716
$$

Q8 $\quad-672 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2 marks) 1 mark for 2 from the three correct enthalpy change values:

$$
\begin{aligned}
& 3 \mathrm{C}+3 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}-394 \times 3=-1182 \mathrm{~kJ} \\
& 4 \mathrm{H}_{2}+2 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}-286 \times 4=-1144 \mathrm{~kJ} \\
& 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}+7 / 2 \mathrm{O}_{2}=+1654 \mathrm{~kJ}
\end{aligned}
$$

Q9 $34 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2 marks)
1 mark for 2 from the three correct enthalpy change values:

$$
\begin{array}{ll}
\mathrm{SiO}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{SiH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} & +1517 \mathrm{~kJ} \\
\mathrm{Si}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SiO}_{2(\mathrm{~s})} & -911 \mathrm{~kJ} \\
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} & -572 \mathrm{~kJ}
\end{array}
$$

Q10 $+226 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2 marks)
1 mark for 2 from the three correct enthalpy change values:

$\Delta \mathrm{H}_{c}$ carbon $\times 2=-394 \mathrm{~kJ} \mathrm{x} 2=$	-788 kJ
$\Delta \mathrm{H}_{c}$ hydrogen	-286 kJ
reverse $\Delta \mathrm{H}_{\mathrm{c}}$ ethyne $=$	+1300 kJ

Q11 -391 kJ mol ${ }^{-1}$ (2 marks) rev (1) $1852 \mathrm{~kJ} \quad$ unchanged (2) $-437 \mathrm{~kJ} \quad 3 \times{ }^{(3)}-1806 \mathrm{~kJ}$

